Solution

a. Frequency Distribution Table

Choosing class interval of size 10 from $80-89$ and ends at $200-209$, we compute the frequency distribution table as follows:
Frequency Distribution Table

Class Interval (x) (in Dollars)	frequency (f)	Mid-Class Interval	$\mathrm{x}-\mathrm{A}$	$\mathrm{MD}=\mathrm{f}(\mathrm{x}-$ -
$80-89$	1	84.5	-60	-60
$90-99$	3	94.5	-50	-150
$100-109$	3	104.5	-40	-120
$111-119$	4	114.5	-30	-120
$120-129$	4	124.5	-20	-80
$130-139$	5	134.5	-10	-50
$140-149$	7	144.5	0	0
$150-159$	6	154.5	10	60
$160-169$	5	164.5	20	100
$170-179$	4	174.5	30	120
$180-189$	3	184.5	40	120
$190-199$	2	194.5	50	100
$200-209$	3	204.5	60	180
	50			100

b. Arithmetic Mean (Using the method of assumed Mean)

From the the table, we choose an Assumed mean $\mathbf{A}=144.5$ and obtained the deviation from assumed mean the fourth column i.e $x-\mathbf{A}$, the product of the mean deviation and the frequency f, is calculated in the last column which is $f(x-\mathbf{A})$.
we can now compute the Mean as follows
Assumed mean A =144.5
Mean deviation

$$
\mathbf{M D}=\frac{\sum f(x-\mathbf{A})}{\sum f}=\frac{100}{50}=2
$$

Then the real Mean \bar{x} can be computed as

$$
\bar{x}=\mathbf{A}+\mathbf{M D}=144.5+2=146.5
$$

Therefore the mean is 146.5 .

