## Answer:

- $100 \%$ of the girls are expected to be normal, $\mathrm{X}+\mathrm{X}+$ and $\mathrm{X}+\mathrm{X}-$
- $50 \%$ of the boys are expected to be normal, $\mathrm{X}+\mathrm{Y}$
- $50 \%$ of the boys are expected to be hemophilic, X-Y
- $75 \%$ of the whole offspring normal (X+X+, X+X-, X+Y)
- $25 \%$ of the whole offspring hemophilic (X-Y)


## Explanation:

Let us represent the recessive allele with the symbol -, and the dominant allele with the symbol + .

- $\mathbf{X}$ - is the chromosome carrying the recessive allele
- $\mathbf{X +}$ is the chromosome carrying the dominant allele

Situation: A phenotypically normal woman whose father was hemophiliac marries a normal man.

## - Hemophiliac father $\Rightarrow \mathbf{X}-\mathbf{Y}$

The father could only provide the chromosome carrying the recessive allele to his daughter, $\mathbf{X}$-. This means that the woman's mother was normal, and she provided a chromosome with the dominant allele, $\mathbf{X +}$. The woman is then heterozygous for the trait, $\mathrm{X}+\mathrm{X}-$.

- $\quad$ Normal woman $\Rightarrow \mathbf{X}+\mathbf{X}$ -
- Normal man $\Rightarrow \mathbf{X}+\mathbf{Y}$

Cross:
Parentals) $\mathrm{X}+\mathrm{X}-\mathrm{x} \quad \mathrm{X}+\mathrm{Y}$
Gametes) $\mathrm{X}+\mathrm{X}-\quad \mathrm{X}+\mathrm{Y}$
Punnett square

|  | $\mathrm{X}+$ | $\mathrm{X}-$ |
| :--- | :--- | :--- |
| $\mathrm{X}+$ | $\mathrm{X}+\mathrm{X}+$ | $\mathrm{X}+\mathrm{X}-$ |
| Y | $\mathrm{X}+\mathrm{Y}$ | $\mathrm{X}-\mathrm{Y}$ |

F1) $50 \%$ of the offspring is expected to be boys
$50 \%$ of the offspring is expected to be girls
Considering the whole progeny,
$-3 / 4=75 \%$ of individuals are expected to be normal $(X+X+, X+X-, X+Y)$
$-1 / 4=25 \%$ of individuals are expected to be hemophilic (X-Y)
Considering only girls,
$-2 / 2=100 \%$ of the girls are expected to be normal
$-1 / 2=50 \%$ of the girls are expected to be homozygous dominant, $\mathrm{X}+\mathrm{X}+$
$-1 / 2=50 \%$ of the girls are expected to be heterozygous, $X+X-$
Considering only boys,
$-1 / 2=50 \%$ of the boys are expected to be normal, $\mathrm{X}+\mathrm{Y}$
$-1 / 2=50 \%$ of the boys are expected to be hemophilic, $X-Y$

